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ABSTRACT

Traditional Post-hoc Explainable Al techniques such as LIME and
SHAP are widely used for providing simple but quantitative ex-
planations for the instance of interest. However, they suffer from
multiple drawbacks attributed primarily to their method of gen-
erating surrogate samples, which renders such techniques to be
unreliable in safety-critical domains such as healthcare and robot-
ics, where the notion of trustworthiness and consistency are of the
utmost importance. In this abstract, we highlight the open chal-
lenges emerging in post-hoc explainable models and motivate two
novel post-hoc explanation techniques that propose probabilisti-
cally relevant approaches to generating surrogate samples, hence
solving several issues encountered in traditional methods.
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1 INTRODUCTION

With data pouring from several applications coupled with the in-
creased computational capability of modern systems, the field of
Artificial Intelligence (Al) is the cornerstone of research and devel-
opment. Recent research has highlighted that the complexity of an
Al model is directly proportional to the quality of its results, be it
generative or predictive. But the complex decisions taken by these
models are too complicated for human minds to understand, thus
making the end-user doubtful of the models’ fairness and trustwor-
thiness. Therefore explainable AI (or XAI) methods are of interest.

1.1 Traditional Explainers

Explaining a prediction of an existing black-box model involves
presenting textual or visual artifacts that provide a qualitative un-
derstanding of the relationship between the instance’s features
and the model’s prediction [7]. Gradient-based approaches such
as DeepLIFT[9] and DeepSHAP[3] are model-aware techniques
that explain gradient-based models such as neural networks. Mimic
models such as decision trees attempt to mimic a predictive model’s
decisions iteratively. Post-hoc, perturbation-based methods such as
LIME ( Local Interpretable Model-Agnostic Explanations) [7] and
SHAP[5] rely on feature permutation for their explanations. The
model-agnostic property of these techniques plays an essential role
in their popularity, i.e., they provide explanations independent of
the training data modality and architecture of the prediction model.
By producing weighted perturbations (surrogate data) in the neigh-
borhood of the instance of interest, these techniques employ locally
weighted regressors to obtain per-feature importance weights.
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Figure 1: Variation of Importance scores across iterations
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1.2 Open Challenges

Despite the widespread usage of LIME and SHAP, subsequent works
have pointed out various issues:

1.2.1 Inconsistency in repeated explanations: Owing to the tech-
nique employed for generating surrogate samples, LIME leads to
inconsistent explanations [11, 12] when invoked multiple times.
We depict this effect by first training a Support Vector Classifier on
the Breast Cancer classification dataset [2] in Fig. 2.a) and using
LIME to generate explanations for a randomly selected sample 10
consecutive times. As shown from the figure, LIME produces differ-
ent rankings for many features when called consecutively, albeit
same initial settings.

1.2.2  Sample Inefficiency: Both LIME and SHAP require a large
number of samples in their surrogate datasets due to the low induc-
tive bias of the linear explainer. This essentially implies that the
number of samples in the surrogate dataset scales with the number
of features. This interplay between the sample/time complexity
and computational complexity of the explainer models is crucial
[10, 12]. We depict this issue in Fig. 2.b), where we measured the
time required to generate explanations for a pre-trained ResNet-
152 model[4] for a randomly selected image from the Imagenet[8]
dataset.



2 CURRENT WORK

The lack of structure in the sampling process hampers the qual-
ity of surrogate data [6]. This issue was addressed in BayesLIME
and BayesSHAP strategies [10], which select informative samples
from the surrogate dataset. However, sampling in BayesLIME and
BayesSHAP is heuristic, and one wonders if a more principled prob-
abilistic approach is feasible. A non-linear explainer overcomes
the shortcomings of linear explainer models with respect to the
bias-variance trade-off by avoiding a linear locality. Furthermore,
using Bayesian methods for explaining ensures that fewer surrogate
samples are required for providing explanations.

2.1 UnRAvVEL: Uncertainty driven Robust Active
learning-based Explanations

UnRAVEL is a novel explainer where we propose a novel acquisition
function called "Faithful Uncertainty Reduction(FUR)" along with a
Gaussian Process (GP) based explainer for probabilistic local sam-
pling and explanations by trading-off information gain and local
fidelity. FUR is given by

o€
Xp = argmax — (x —-X0— @) +on(x), (1)
X 2 =
T2

T1

where @ is the empirical mean of the standard deviation of individ-
ual features in training data, ¢ ~ N (0, 1), x¢ is the index sample,
and oy, (xp) is the standard deviation of f, obtained until the n-th
sample x,. Here the term *T1’ helps in maintaining local fidelity and
the term T2’ helps in trading off information gain through uncer-
tainty. The GP based explainer module provides explanations using
the inverse length-scale hyperparameters of the ARD(Automatic
Relevance Determination) kernel.

2.2 GLIME: Gaussian mixture based Local
Interpretable Model agnostic Explanations

To counter the instability of LIME[7] in repeated iterations, DLIME
(Deterministic LIME)[11] employed an agglomerative clustering-
based approach instead of random sampling. The central idea is to
cluster the entire dataset and recognize the cluster in which the
instance of interest lies so that the neighborhood points are sampled
as surrogate data. The biggest drawback of DLIME is that it employs
training data for clustering. Further, since DLIME uses label-based
clustering, some clusters may contain very few members due to
the sparsity of labels in imbalanced datasets. In summary, DLIME
counters stability but fails to generate high-quality explanations.
GLIME is a probabilistic sampling alternative that exploits the
generative and regularizing properties of Gaussian mixture mod-
els (GMM)[1]. We assume that we have information regarding the
Gaussian cluster mean and variances that fit the actual data distri-
bution. This can be obtained from the training data and must be
made available during the explanation. While the availability of
the cluster centers and variance allows us to provide soft assign-
ments to the instance of interest, the generative nature of GMMs
enables us to generate surrogate samples using popular sampling
techniques like MCMC(Markov Chain Monte Carlo). Incorporating
a prior in GMM ensures that overfitting is decreased even in highly

imbalanced data. Furthermore, since only the cluster centers and
variances need to be made available during the explanation phase,
it saves on storage requirements compared to DLIME and addresses
privacy issues, especially in decentralized training methodologies
such as federated learning. Since choosing the optimal number of
clusters is crucial, we proposed a Bayesian Gaussian Mixture model,
which uses ARD for cluster parameter selection. [1].

3 FUTURE WORK

In this extended abstract, we provide a brief introduction to two
novel XAI techniques, namely GLIME and UnRAVEL. The core
theme of our research is to provide XAI solutions in use cases
where the concepts of trustworthiness and consistency are of the
utmost importance. Currently, we are working on the following:

¢ Global Explainer based on UnRAvVEI: GPs are computa-
tionally complex, which does not affect the local setting, but
makes it hard to be employed in the global setting. We are
working on building a global explainer based out of sparse
approximations of Gaussian Processes.

e Multimodal joint explanations: The kernel used in the
Gaussian Process explainer can be utilized in many domain-
specific applications. Following that direction, we’re working
on building a novel explainer module that can consider ML
models of different modalities.

¢ GLIME using Bayesian Optimization: To make GLIME
hyperparameter free, we are working on Bayesian Optimiza-
tion based pre-processing module for choosing the optimal
hyper priors used in the GMM module.
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